Tomáš Kaiser Unirersity of West Bohemia, Pilsen

STRUCO meeting, Paris, May 16, 2019

Permutation graphs

= cubic graphs with a 2-factor of two chordless cycles

Permutation snarks

- chromatic index 3 or 4

-infinitely many with
$$\chi'=4$$
 (\rightarrow permutation snarks)
-clearly on 2n vertices, n odd

Problems we'll consider

The 4-flow conjecture

Conjecture (Tutte):

Every bridgeless graph with no nowhere-zero 4-flow contains a Petersen minor.

EASY for permutation graphs. Theorem (Ellingham 84): A permutation graph contains either an M-C4, or an M-Pro. Theorem (TK, Seroni, Yilma 13): If G is a permutation graph on ≥ 6 vertices and $e \in E(M)$ is contained in every M-C4, then e is contained in an M-P₁₀.

Corollary: A permutation graph with >40 vertices and no M-C4 contains $\geq \frac{n}{2} - 4$ copies of M-Pro (this is tight up to a constant factor)

Orders of permutation snarks

Brinkmann, Goedgebeur, Hägglund, Markström 13: order # permutation snarks \bigcirc Ο

Problem: Do all permutation snarks have 2 (mod 8) vertices?

Berge-Fulkerson conjecture

Related problems

Conjecture (Fan, Raspaud): Every bridgeless cubic graph contains 3PMs with empty intersection. EASY from the Fouquet-Vanherpe result.

Conjecture (Partel; TK, Král', Norrin): Every bridgeless cubic graph contains 3 PMs covering $\frac{4}{5}$ of the edges. EASY for the same reason (even with 5%).

Conjecture (Jaeger; Petersen colouring) The edges of any bridgeless cubic graph can be coloured with edges of P10 such that adjacent edges have adjacent colours.

NOTHING KNOWN.