Edge-colouring permutation graphs

Tomas Kaiser University of West Bohemia, Pilsen STRUCO meeting, Paris, May 16, 2019

Permutation graphs
$=$ cubic graphs with a 2-factor of two chordess cycles

Permutation snarks

- chromatic index 3 or 4
-infinitely many with $X^{\prime}=4 \quad(\rightarrow$ permutation snarks)
- clearly on $2 n$ vertices, n odd

Refuted conjecture (Chang):
P_{10} is the only cyclically 5-edge-counected permutation snark.

- other such snarks constructed by Hagglund and Hoffmann- Ostenhof

Problems weill consider
-the 4 -flow conjecture

- orders of permutation snarks
- Berge-Fulkerson and related conjectures

The 4-flow conjecture
Conjecture (Tate):
Every bridgeless graph with no nowhere-zero 4-flow contains a Petersen minor.

EASy for permutation graphs.
Theorem (Ellingham 84):
A permutation graph contains either an $M-C_{4}$, or an $M-P_{10}$.

Theorem (TK, Sereni, Yilma 13):
If G is a permutation graph on $\geqslant 6$ vertices and $e \in E(M)$ is contained in every $M-C_{4}$, then e is contained in an $M-P_{10}$.

Corollary: A permutation graph with $\geqslant 40$ vertices and no $M-C_{4}$ contains $\geqslant \frac{n}{2}-4$ copies of $M-P_{10}$.
(this is tight up to a constant factor)
-interesting link to cographs:

no $M-P_{10}$ containing
 $a a^{\prime} \Rightarrow H_{a}$ is a cograph
auxiliary graph H_{a}

Orders of permutation snarks
Brinkmans, Goedgebeur, Hägglund, Markstrom 13:

order	\# permutation snarks
10	1
14	0
18	2
22	0
26	64
30	0
34	10771

Problem: Do all permutation snarks have $2(\bmod 8)$ vertices?

Berge-Fulkerson conjecture
Conjecture (Fulkerson):
Every bridgeless cufic graph admits 6 perfect matchings such that each edge is contained in two of them.

NOTHING KNOWN for permutation graphs.
Conjecture (Barge):
The edges of any bridgeless cubic graph can be covered by 5 PMs.
TRUE for permutation graphs:
Theorem (Fouquet, Vanherpe 09):
4 PMs suffice except in P_{10}.

Related problems
Conjecture (Fan, Raspaud):
Every bridgeless cubic graph contains 3PMs with empty intersection.
EASy from the Fouquet-Vanherpe result.
Conjecture (Patel; TK, Kraal', Noria):
Every bridgeless cubic graph contains 3 PMs covering $\frac{4}{5}$ of the edges.
EASY for the same reason (even with $5 / 6$).
Conjecture (Jaeger; Petersen colouring)
The edges of any bridgeless cubic graph can be coloured with edges of P_{10} such that adjacent edges have adjacent colours.
NOTHING KNOWN.

